The CUL3-SPOP-DAXX axis is a novel regulator of VEGFR2 expression in vascular endothelial cells

نویسندگان

  • Tomohisa Sakaue
  • Iori Sakakibara
  • Takahiro Uesugi
  • Ayako Fujisaki
  • Koh-ichi Nakashiro
  • Hiroyuki Hamakawa
  • Eiji Kubota
  • Takashi Joh
  • Yu-ki Imai
  • Hironori Izutani
  • Shigeki Higashiyama
چکیده

Vascular endothelial cell growth factor receptor 2 (VEGFR2) is an essential receptor for the homeostasis of endothelial cells. In this study, we showed that NEDD8-conjugated Cullin3 (CUL3)-based ubiquitin E3 (UbE3) ligase plays a crucial role in VEGFR2 mRNA expression. Human umbilical vein endothelial cells treated with MLN4924, an inhibitor of NEDD8-activating enzyme, or with CUL3 siRNA drastically lost their response to VEGF due to the intense decrease in VEGFR2 expression. Moreover, speckle-type POZ protein (SPOP) and death-domain associated protein (DAXX) were involved in the CUL3 UbE3 ligase complex as a substrate adaptor and a substrate, respectively. Knockdown of SPOP and CUL3 led to the upregulation of DAXX protein and downregulation of VEGFR2 levels. These levels were inversely correlated with one another. In addition, simultaneous knockdown of SPOP and DAXX completely reversed the downregulation of VEGFR2 levels. Moreover, the CUL3-SPOP-DAXX axis had the same effects on NOTCH1, DLL4 and NRP1 expression. Taken together, these findings suggest that the CUL3-SPOP-DAXX axis plays a very important role in endothelial cell function by targeting key angiogenic regulators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway

Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

P-189: Investigation of Vascular Endothelial Growth Factor Receptors Expression in Ectopic Pregnancy

Background: Ectopic pregnancy (EP) is a complication of conception in which the embryo implants outside of uterine cavity. The increasing incidence of serious maternal morbidity resulting from EP has prompted the search for biomarkers to aid in early diagnosis and take advantage of conservative treatments. One of the effective biomarkers in EP is vascular endothelial growth factor (VEGF). VEGF ...

متن کامل

Differentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells

Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017